Homework 5

P4.2.2 Determine V_X in Figure P4.2.2 by using the substitution theorem, where N_A is an unspecified circuit that passes a current of 0.5 A.

Solution: N_A is replaced by a 0.5 A current source. The current in the 7.5 Ω resistor is

 $V_X/7.5$ A. The current in the 10 Ω resistor is $(V_{\times}/7.5 - 0.5)$. From KVL around the mesh on the LHS, $30 - V_X - 10(V_X/7.5 - 0.5) = 0$, which gives $I_X = 2$ A, so that $V_X = 15$ V.

Figure P4.2.2-1

- Determine *R_{in}* in Figure P4.2.10 by P4.2.10 applying the source absorption theorem.
- **Solution:** The voltage across the 2 Ω resistor 0.25 V is 4 $V_{\rm O}$, so that the current in the middle branch is $2V_0$ in the direction of a voltage rise across the VCVS. This source is equivalent to a resistance of -2.5 Ω . In series with 2 Ω , the resistance of this branch is V₄ -0.5 Ω , which cancels out the 0.5 Ω resistance of the branch on the RHS. The current in the 0.25 V₄ branch on the LHS is V_A A in the direction of a voltage drop through the VCVS, so that this source is equivalent to

a resistance of 0.25 Ω . Added to 1 Ω , this gives $R_{in} = 1.25 \Omega$.

P5.1.10 Determine I_X in Figure P5.1.10.

37

Figure P5.1.15

³⁻²

P5.1.22 Determine I_X in Figure P5.1.22.

From KCL at the upper node, the current in the left branch is $(5 - I_X)$ A. From KVL around the outer loop, starting with the lower node and moving CW: $10(5 - I_X) - 5 - 10 - 4I_X = 0$, or, $-14I_X + 35 = 0$, which gives $I_X = 2.5$ A.

P5.1.25 Determine I_X in Figure P5.1.25.

Solution: The dependent source is replaced by an independent source V_Y . If the 10 V source is applied alone, with the other sources set to zero. the component of I_X due to this source is zero. If the 12 V source is applied alone,

the 12 V appears across 10 Ω in series with a parallel combination of 3 and 6 Ω . The source current is 12 V/12 Ω = 1 A. From current division, I_{X1} = -1/3 A. When V_Y is applied alone, the source current is $V_Y/12$. From current division, $I_{X2} = V_Y/36$. By superposition, and substituting $V_Y = 6I_X$, $I_X = -1/3 + I_X/6$. This gives $I_X = -0.4$ A.

Determine in Figure P5.1.29: (a) V_{0} , and P5.1.29 $5I_X$ (b) the power delivered or absorbed by the 1 A source. 8Ω 4Ω 2Ω P5.1.29 (a) The 8 Ω resistor is redundant as far + I_{X} as I_X and V_0 are concerned. If the $10I_{x}$ 3 V 1 A V_{0} 1 A source is applied alone, $I_{X1} = 1$ A. If the $5I_X$ source is replaced by an independent source I_{Y} and applied Figure P5.1.29 alone, $I_{X2} = -I_Y$. If the 3 V source is applied $5I_{\chi}$ alone, $I_{X3} = -3/2$. If the $10I_X$ source is replaced by an independent source V_Y and applied 8Ω 4Ω 2Ω alone, $I_{X4} = V_Y/2$. By superposition, + and substituting $I_Y = 5I_X$ and $V_Y =$ I_{χ} $10I_{Y}$ 3 V $10I_X$, $I_X = 1 - 5I_X - 3/2 + 10I_X/2$, or I_X 1 A V_{0} = -0.5 A. From the original circuit, V_0 $= 3 - 2(1 - 6I_X) = 3 - 2(1 + 3) = -5$ V. Figure P5.1.29 (b) The current in the 4 Ω resistor is $5I_{\chi}$ $(1 - 5I_X) = 3.5$ A; hence, the voltage across the 1 A source is $3 + 4 \times 3.5 + 8 = 25$ V. 8Ω 4Ω 2Ω The power delivered by the source is P = 25 W. + $1-5I_X$ $-6I_{Y}$ 1 Vo 1 A 3 V 10/

Figure P5.1.29-1

 I_X