Homework 5

P4.1.50 Derive NEC between terminals 'ab' in Figure P4.1.50, assuming all resistances are 2Ω.

Solution: Initialize. All given values and the required I_{N} are entered. The nodes are labeled.

Simplify. The circuit is in a simple enough form.
Deduce. The branches 'ha' and 'hcb' are in parallel, so that by current division, $I_{c b}=1 / 3 \mathrm{~A}$. It follows that $I_{b d}=I_{N}+4 / 3$. Since the voltage across the branch 'bdf' is the same as the $V_{a t}$,

Figure P4.1.50 then $I_{a f}=2\left(I_{x}+4 / 3\right)$ and $I_{f g}=3\left(I_{N}+4 / 3\right)=3 I_{N}+4$; From KCL at node ' g ', $I_{g a}=3 I_{N}+3$. From KVL around the mesh 'afga', $2 \times 2\left(I_{N}+4 / 3\right)$ $4\left(3 I_{N}+4\right)+2\left(3 I_{N}+3\right)=0$, which gives $I_{N}=-41 / 33 \mathrm{~A}$.

When the current sources are set to zero, $R_{a f}=2| | 6=1.5 \Omega ; R_{f b}=4 \Omega ; R$ of the branch on the RHS is 6Ω; it follows that $R_{N}=(6 \times 5.5) / 11.5=$ 66/23 Ω.

P4.2.2 Determine V_{x} in Figure P4.2.2 by using the substitution theorem, where N_{A} is an unspecified circuit that passes a current of 0.5 A .
Solution: N_{A} is replaced by a 0.5 A current source. The current in the 7.5Ω resistor is $V_{x} / 7.5 \mathrm{~A}$. The current in the 10Ω resistor is $\left(V_{x} / 7.5-0.5\right)$. From KVL around the mesh on the LHS, $30-V_{x}-10\left(V_{x} / 7.5-0.5\right)=0$, which gives $I_{x}=2 \mathrm{~A}$, so that $V_{X}=15 \mathrm{~V}$.

Figure P4.2.2

Figure P4.2.2-1

P4.2.10 Determine $R_{\text {in }}$ in Figure P4.2.10 by applying the source absorption theorem.

Solution: The voltage across the 2Ω resistor is $4 V_{o}$, so that the current in the middle branch is $2 V_{0}$ in the direction of a voltage rise across the VCVS. This source is equivalent to a resistance of -2.5Ω. In series with 2Ω, the resistance of this branch is -0.5Ω, which cancels out the 0.5Ω resistance of the branch on the RHS. The current in the branch on the LHS is $V_{A} A$ in the direction of a voltage drop through the

Figure P4.2.10

Figure P4.2.10-1 VCVS, so that this source is equivalent to a resistance of 0.25Ω. Added to 1Ω, this gives $R_{\text {in }}=1.25 \Omega$.

P5.1.10 Determine I_{x} in Figure P5.1.10.
Solution: The sources can be split in two resulting in two half circuits as shown. These two half circuits are symmetrical about the midline, so they have the same currents at symmetrtical nodes. Thus, if a current I enters node ' a '. then an equal current I enters node ' a '. this means that $l=-l$, so that l is zero. Similarly, no current flows between nodes 'b'

Figure P5.1.10 and ' b ' and betwee nodes ' c ' and ' c '. the two half circuts can therefore be separated. It follows that IX $=0.5 \mathrm{~A}$.

Figure P5.1.10-2

P5.1.15 Determine I_{x} in Figure P5.1.15. Note that I_{x} is independent of the 10Ω resistor and the dependent source because the 5 A source partitions the circuit into two subcircuits. The upper subcircuit is independent of the lower subcircuit, but the lower subcircuit depends on the upper subcircuit

Figure P5.1.10-1

Figure P5.1.15 through $I X$.
Solution: The current in the diagonal branch is, from KCL, $I_{x}-5$. From KVL around the mesh on the RHS, $10+5 I_{x}+5\left(I_{x}-5\right)$ $=0$, or $10 I_{x}=15$, so that $I_{x}=1.5 \mathrm{~A}$.

Figure P5.1.15

P5.1.22 Determine I_{x} in Figure P5.1.22.
Solution: $V_{O}=-5 \times 5=-25 \mathrm{~V}$, so that the dependent source is replaced with an independent voltage source of 5 V , and of reversed polarity, as shown. When either voltage source is applied alone, with the current source replaced by an open circuit, the components

Figure P5.1.22 are zero. When the current source is applied alone, $V_{O}=-25 \mathrm{~V}$.

From KCL at the upper node, the current in the left branch is $\left(5-I_{X}\right)$ A. From KVL around the outer loop, starting with the lower node and moving CW: 10(5-IX) -$5-10-4 I_{x}=0$, or, $-14 I_{x}+35=0$, which gives

Figure P5.1.22-1 $I_{x}=2.5 \mathrm{~A}$.

P5.1.25 Determine I_{x} in Figure P5.1.25.
Solution: The dependent source is replaced by an independent source V_{γ}. If the 10 V source is applied alone, with the other sources set to zero. the component of I_{X} due to this source is zero. If the 12 V source is applied alone,
 the 12 V appears across 10Ω in series with a parallel combination of 3 and 6Ω. The source current is $12 \mathrm{~V} / 12 \Omega=1 \mathrm{~A}$. From current division, $I_{X 1}=-1 / 3 \mathrm{~A}$. When V_{Y} is applied alone, the source current is $V_{Y} / 12$. From current division, $I_{X 2}=V_{Y} / 36$. By superposition, and substituting $V_{Y}=6 I_{X}, I_{X}=-1 / 3+I_{X} / 6$. This gives $I_{X}=-0.4 \mathrm{~A}$.

P5.1.29 Determine in Figure P5.1.29: (a) V_{0}, and (b) the power delivered or absorbed by the

P5.1.29 1 A source.
(a) The 8Ω resistor is redundant as far as I_{x} and V_{O} are concerned. If the 1 A source is applied alone, $I_{x 1}=1$ A. If the $5 I_{x}$ source is replaced by an independent source I_{r} and applied

Figure P5.1.29 alone, $I_{X 2}=-I_{y}$. If the 3 V source is applied alone, $I_{x 3}=-3 / 2$. If the $10 I_{x}$ source is replaced by an independent source V_{Y} and applied alone, $I_{X 4}=V_{Y} / 2$. By superposition, and substituting $I_{Y}=5 I_{X}$ and $V_{Y}=$ $10 I_{x}, I_{x}=1-5 I_{x}-3 / 2+10 I_{x} / 2$, or I_{x} $=-0.5 \mathrm{~A}$. From the original circuit, V_{o} $=3-2(1-6 / x)=3-2(1+3)=-5 \mathrm{~V}$.
(b) The current in the 4Ω resistor is $\left(1-5 I_{x}\right)=3.5 \mathrm{~A}$; hence, the voltage across the 1 A source is $3+4 \times 3.5+8=25 \mathrm{~V}$. The power delivered by the source is $P=25 \mathrm{~W}$.

Figure P5.1.29-1

